
A Variable Elimination Approach for
Optimal Scheduling with Linear Preferences

Nicolas Meuleau∗ and Robert A. Morris
NASA Ames Research Center

Moffet Field, California 94035-1000, USA
{Nicolas.F.Meuleau,Robert.A.Morris}@nasa.gov

Neil Yorke-Smith
SRI International

Menlo Park, California 94025, USA
nysmith@ai.sri.com

Abstract

In many practical scheduling problems, feasible solu-
tions can be partially ordered according to differences
between the temporal objects in each solution. Often,
these orderings can be computed from a compact value
function that combines the local preference values of
the temporal objects. However, in part because it is
natural to view temporal domains as continuous, find-
ing complete, preferred solutions to these problems is a
challenging optimization task. Previous works achieve
tractability by making restrictions on the model of tem-
poral preferences, including limiting representations to
binary and convex preferences. We propose an appli-
cation of Bucket Elimination (BE) to solve problems
with piecewise linear constraints on temporal prefer-
ences with continuous domains. The key technical hur-
dle is developing a tractable elimination function for
such constraints. This proof of concept takes a step to-
ward an ability to solve scheduling problems with richer
models of preference than previously entertained. Fur-
ther, it provides a complementary approach to exist-
ing techniques for restricted models, because the com-
plexity of BE, while exponential in the treewidth of the
problem, is polynomial in its size.

Introduction
Practical problems requiring the assignment of times to
planned events are pervasive in the world, from mundane
applications like calendar management (Moffitt, Peintner,
& Yorke-Smith 2006), to the more exotic such as science
observations for planetary exploration (Bresina, Khatib, &
McGann 2006). In cases such as these, feasible temporal
assignments can be ordered on the basis of the degree to
which certain preferences are adhered to. Such preferences
can sometimes be expressed as a simple function of times,
(e.g., it’s preferable that an event start as early as possible)
but may also express complex relationships (e.g., it’s prefer-
able that a set of events have roughly the same duration).

There are numerous efforts in representing and solving
problems in decision-making with preferences. Practical
problems are often challenging because of they involve
many preference criteria over continuous temporal variables.
Much of the previous work in optimization of temporal pref-
erences has sought to manage the potential complexity of

∗Carnegie Mellon University

such problems by limiting the expressive power of the lan-
guage for expressing preferences. A common model, the
Simple Temporal Problem with Preferences (STPP) (Morris
et al. 2004) expands the Simple Temporal Network (Dechter,
Meiri, & Pearl 1991) by allowing numerical preferences on
the admissible values of temporal variables. STPPs com-
bine both hard constraints that must be satisfied for a solu-
tion to be valid, and soft constraint that assign a preference
value to each admissible assignment. Global preferences are
obtained by summing the local preferences of temporal ob-
jects. STPPs inherit from STNs being limited to unary and
binary constraints. Moreover, all existing efficient solution
techniques for STPPs assume convex or semi-convex pref-
erences. Notably, the most significant result in STPPs is
the use of Linear Programing (LP) to solve problems with
binary piecewise linear convex preferences as described in
(Morris et al. 2004).

Despite such progress in solving planning and scheduling
problems with temporal preferences, restrictions imposed by
binary, convex preference functions result in limitations in
the expressive power of the language of constraints. Con-
sider a natural temporal preference such as Maximize the
temporal gap (duration) between A and B. Graphically, this
preference could be expressed as a V-shaped non-convex
function from times to preference values that reaches 0 (the
least preferred value) at time 0.

Removing the restriction on constraints imposed by the
STPP paradigm requires an alternative approach to finding
solutions. A natural course of action at this point is to con-
sider general approaches to constraint optimization, either
based on conditioning (backtracking, branch and bound) or
Bucket Elimination (BE), which is a generalization of dy-
namic programming (Dechter 1999; 2003). The interest in
this paper is in building a temporal solver based on BE for
a model of time in which constraints are piecewise linear
over continuous domains, but not necessarily binary or con-
vex. The result of this work is the ability to solve schedul-
ing problems with richer models of preference than previ-
ously entertained. Further, we provide a complementary ap-
proach to existing techniques for restricted models, because
the complexity of BE, while exponential in the treewidth of
the problem, is polynomial in its size. The main contribution
of this paper is the proof of the soundness of an approach
whose competitiveness will be explored in future works.

Figure 1: A non-convex function over −10 ≤ t ≤ 10 that
expresses the preference: maximize the temporal difference
between two events.

The next section survey previous work on BE. There fol-
lows the definition of the class of continuous temporal prob-
lem considered. It is based on piecewise linear value func-
tions that encode both hard and soft constraints, and that are
not necessarily binary or convex. We then show that BE
can be applied to this domain, demonstrating by construc-
tion that elimination preserves piecewise linearity. To im-
prove the efficiency of the elimination process, the notion
of the ‘witness’ is applied to the elimination function, lead-
ing to our final algorithm. Finally, preliminary experimental
results using the full BE algorithm are summarized.

Bucket Elimination
Bucket Elimination (BE) is a complete approach to solving
constraint optimization problems that generalizes dynamic
programming (Dechter 1999; 2003). Intuitively, BE solves
a problem by a series of replacements of variables by con-
straints that summarize the effect of each variable on the best
solution to the problem.

In this approach, hard and soft constraints on an ordered
set of variables X = {x1, x2, . . . xn} are represented as
numerical functions, here called value functions V , defined
over a subset of X called the scope of V . A hard constraint
is represented by a value function that takes the value 0 in
each state where it is satisfied, and −∞ elsewhere. A soft
constraint is represented by a function taking finite values
that reflects the preferences over the variables in its scope.
A value function can take both finite and infinite values and
represent both soft and hard constraints at the same time.

Given a set V of such preference functions, bucket B(i) is
defined as the set of constraints having xi in their scope as
their highest variable, according to the ordering of X . For
a fixed i, we call Xi = {xj1 , xj2 , . . . xjk

, xi} the smallest
subset of variables such that the scope of each utility in B(i)
is included in Xi. We then define X−i = Xi \ {xi} =
{xj1 , xj2 , . . . xjk

}. Technically, X−i regroups all parents of
xi in the induced constraint graph (Dechter 1999).

BE eliminates variables in reverse order by creating a con-

straint Vi for each xi eliminated following:

Vi = Elimi

(

∑

V ∈B(i) V
)

which is defined as:
∀(xj1 , xj2 , . . . xjk

) : Vi(xj1 , xj2 , . . . xjk
) =

max
xi

∑

V ∈B(i)

V (xj1 , xj2 , . . . xjk
, xi)

 .
(1)

Vi is added to the bucket B(jk), where jk is the index of the
highest variable in X−i. BE terminates when all the vari-
ables are eliminated (the resulting function V0 is then a con-
stant function returning the highest value of any solution to
the problem). The optimal state x∗ that yielded the highest
value can be recovered easily based on this computation.

The complexity of BE strongly contrasts with that of stan-
dard conditioning algorithm such as backtracking search and
branch and bound (Dechter 1999). The worst-case complex-
ity of these algorithms is O(mn) where n is the number of
variables and m is the size of the discrete domain of each
variable. Therefore, it is exponential in the problem size
(number of variable). In contrast, the complexity of BE is
exponential in a parameter called the treewidth (or induced
width) of the problem and, if the treewidth is fixed, polyno-
mial in the problem size. The induced width (Dechter 1999)
depends on the ordering of variables in X . Therefore, re-
search as been directed towards finding variable orderings
that minimize the treewidth. Unfortunately, it turns out to
be an NP-hard problem; (Dow & Korf 2007) is an example
of heuristic approach. It is important to note that all previ-
ous treewidth minimization techniques can be applied to the
continuous framework described in this paper as well as to
any other instance of BE.

BE has been used successfully to solve Constraint Opti-
mization Problems (Dechter 2003). The key contribution of
this paper is to apply it to scheduling problems with contin-
uous domains.

Problem Formulation
We define a framework where piecewise linear value func-
tions are used to represent both soft and hard constraints over
a set of temporal variables X = {x1, x2, . . . xn} with con-
tinuous domains.
Definition 1 For any subset of continuous variables X =
{xi1 , xi2 , . . . xik

}, let R[X] denote the k-dimensional con-
tinuous space R

k where the axis are labeled with variables
in X .

Definition 2 Given a subset of continuous variables X =
{xi1 , xi2 , . . . xik

}, a (k + 1)-tuple (α0, αi1 , αi2 , . . . αik
) is

used to represent several quantities:

• A linear constraint C that is true in all states x =
(xi1 , xi2 , . . . xik

) such that α0 +
∑k

l=1 αil
xil
≤ 0. We

say that x satisfies C iff. C is true in x;
• A linear utility function u that associates the re-

ward u(x) = α0 +
∑k

l=1 αil
xil

to each state x =
(xi1 , xi2 , . . . xik

). To represent a hard constraint, the con-
stant α0 can take the value −∞;

• A linear policy µ implementing the control law xi ← α0+
∑k

l=1 αil
xil

for a given index i /∈ (i1, i2, . . . ik).

The set X is called the scope of the constraint, utility or
policy.

Definition 3 A convex polygon is defined as a set of linear
constraints, C = {Ci, i}. Each constraint represents a face
of the polygon (the term face is sometimes used in a two
dimensional setting, and singular point in 1D). The points
belonging to the polygon are those that satisfy all constraints
in C. The scope of a polygon is the union of the scopes of its
faces.

Note this is a loose definition of a polygon that encompasses
unbounded pieces.
Definition 4 A value function piece is defined as a pair P =
(C, u) where C is a convex polygon and u is a linear utility
function. To store the optimal policy, some pieces also carry
a linear policy µ. The scope of a piece is the set of variables
appearing in its edges, utility function, or policy.

Definition 5 A piecewise linear value function with scope
X = {xi1 , xi2 , . . . xik

} is defined as a collection of value
function pieces V = {Pi, i} such that the polygons of the
pieces Pi constitute a partition of R[X], and the scope of
each piece Pi is included in X .

Definition 6 A linear constraint optimization problem is a
pair P = (X,V) where X = {x1, x2, . . . xn} is a set of
continuous temporal variables and V is a set of piecewise
linear value functions V = {Pi, i} with scope included in
X . A solution of P is a state x = (x1 . . . , xn) ∈ R[X]. A
solution x∗ is optimal if it maximizes

∑

V ∈V
V (x).

Solving Linear Constraint Optimization
Problems using Bucket Elimination

Formally, BE is based on two operators over functions: sum-
ming and variable elimination (Elimi). The soundness of
BE for piecewise linear value functions is formally derived
from Theorem 1, which we establish from two Lemmas.
Lemma 1 The sum of a finite number of piecewise linear
value functions is a piecewise linear value function.

Proof: The sum of two value functions is computed by enu-
merating all non-empty intersections of two of their pieces,
and summing the utility functions carried by these pieces.
Because the intersection of two convex polygons is a con-
vex polygon, and the sum of two linear utility functions is a
linear utility function, it results in a well defined piecewise
linear value function. �

Lemma 2 If Q is a piecewise linear value function with
scope X = {xj1 , xj2 , . . . xjk

, xi}, then Elimi(Q) is
a piecewise linear value function with scope X−i =
{xj1 , xj2 , . . . xjk

}.

Proof: To prove this lemma, we show how Elimi(Q) can be
computed and make clear that, by construction, the resulting
function is a piecewise linear value function.

The first operation in the calculation of Elimi(Q) is to
project the partition of R[X] defined by Q on R[X−i] (or,

loosely speaking, to project Q on X−i). It consists of com-
puting a partition of R[X−i] in convex polygons, as shown
in Fig. 2 for X = {X0, X1}. This is achieved by first of pro-
jecting the pieces of Q on R[X−i], which creates only con-
vex polygonal pieces, and then computing all possible inter-
sections of projected pieces. Therefore, the partition com-
puted by projection contains only convex polygonal pieces.

Consider now a particular projected piece P 0 and call P0
Q

the set of pieces of Q that contributes to P 0 (intersecting
the horizontal stripe associated with P0 in Fig. 2). If ∆0

as any translation of the xi-axis that projects inside of P 0,
then ∆0 enters P through a well defined face C−

P and ex-
its through another face C+

P (see Fig. 2). Because utility
is linear over P , maximum utility is attained on a face C∗

P

that is either C−

P or C+
P . This allows deriving an analyt-

ical expression of the optimal decision rule for xi. If the
optimal of piece P is attained on the face represented by
C∗

P : αC
0 +

∑k
l=1 αC

jl
xjl

+ αC
i xi ≤ 0 (C∗

P = C−

P or C+
P),

then the optimal decision rule (policy) for piece P is µP :

xi ← −
αC

0

αC
i

−

k
∑

l=1

αC
jl

αC
i

xjl
. (2)

This rule guarantees that αC
0 +

∑k
l=1 αC

jl
xjl

+ αC
i xi = 0,

and thus that we are choosing a point on the face represented
by C∗

P . As long as parent variables (xj1 , xj2 , . . . xjk
) are in

P 0, the optimal value of Q over piece P is attained by µP ,
which is a linear policy with scope X−i.

Now that the optimal policy for piece P is known, it is
easy to derive an analytical expression of the optimal value
of Q over P . If uP is the linear utility associated with piece
P and µP is the optimal policy in P , then the optimal value
is the return of uP when xi is chosen following µP . In other
words, if uP (x) = αu

0 +
∑k

l=1 αu
jl

xjl
+αu

i xi and µP : xi ←

αµ
0 +

∑k

l=1 αµ
jl

xjl
+ αµ

i xi , then an analytical expression of
Vp is obtained by substituting xi for µP in uP :

VP (x) = αu
0 + αu

i · α
µ
0 +

k
∑

l=1

(

αu
jl

+ αu
i · α

µ
jl

)

xjl
. (3)

The resulting utility is linear with scope X−i.
To compute Elimi(Q), we need to maximize Q with re-

spect to xi. By definition:

∀(x0
j1

, x0
j2

, . . . x0
jk

) ∈ P 0 :

max
xi

[

Q(x0
j1

, x0
j2

, . . . x0
jk

, xi)
]

=

max
P∈P0

Q

[

Vp(x
0
j1

, x0
j2

, . . . x0
jk

)
]

.

However, the piece P that maximizes Q may vary over P 0.
Therefore, P 0 may be split in at most as many pieces as in
P0

Q. For each P ∈ P0
Q, we build a convex polygon CP by

first copying all faces of P 0 and then adding to this set the
following constraints:

∀P ′ ∈ P0
Q, P ′ 6= P : uP ′(x) − uP (x) ≤ 0 , (4)

PSfrag replacements

x0

x1

∆0

P

P 0 C−

P C+
P

Figure 2: Projecting of Q on X−i = {x0}: The convex polygonal
partition of the plane represents the pieces of Q. Horizontal stripes
represents the partition of R[X−i] obtained by projecting Q.

where uP and uP ′ are the linear utility functions carried by
P and P ′. These constraints are well defined linear con-
straints with scope X−i. They ensure that the optimal of
Q over P 0 is carried by piece P . If the resulting set CP

is consistent, then CP is a well defined polygon and the
triple (CP , VP , µP) is a well defined value function piece of
Elimi(Q). Because Elimi(Q) is made only of such pieces,
it is a well defined piecewise linear value function. �

Theorem 1 If bucket B(i) contains only piecewise linear
value functions, then the function Vi resulting from an ap-
plication of Eqn. 1 is also a piecewise linear value function.

Proof: The claim results directly from Lemma 1 and 2. �

Bucket Elimination’s fundamental equation (Eqn. 1) starts
with a universal quantification over (xj1 , xj2 , . . . xjk

). In the
linear framework defined in the previous section, these vari-
ables have infinite continuous domains. Therefore, applying
Eqn. 1 requires a continuous infinity of maximizations. For-
tunately, Theorem 1 shows that the computation can be per-
formed only once for each piece of Vi, and there is a finite
number of such pieces.

A direct application of Th. 1 solves

∀P ∈ Vi, ∀x = (xj1 , xj2 , . . . xjk
) ∈ P :

Vi(x) = max
xi

∑

V ∈B(i)

V (xj1 , xj2 , . . . xjk
, xi)

 ,
(5)

this computation being performed analytically. That is, an
analytical expression of Vi (and the associated optimal pol-
icy) that applies to the whole piece P is computed instead
of a single numerical value. In this way, Eqn. 1 is implicitly
solved over the infinite set of values.

Algorithm 1 is a straightforward procedure computing
Eqn. 5. It follows closely the proof of Lemma 1 and 2. It
is important to note that, for a fixed treewidth, the complex-
ity of this procedure is polynomial in the size of the problem,
which is a vector four variables: (i) The number of temporal
variables n; (ii) The number of value functions V ∈ B(i);
(iii) the maximum number of pieces in a function V ∈ B(i);

Algorithm 1 A straightforward implementation of Th. 1
1: Compute an analytical representation of Q =

P

V ∈B(i) V .
2: Project Q on X−i.
3: for each projected piece P 0 do
4: for each piece P of Q that contributes to P 0 (P ∈ P0

Q) do
5: Compute the optimal return VP of P following Eqn. 3.
6: Compute the constraint set CP as in proof of Lemma 2.
7: if CP is consistent then
8: Add the piece (CP , VP) to Vi.
9: end if

10: end for
11: end for

(iv) the maximum number of constraints in a piece of a func-
tion V ∈ B(i). The algorithm is exponential in the treewidth
because it has to build a piecewise linear value function Vi

with dimension as high as the treewidth.
While being conceptually simple, Alg. 1 presents two bot-

tlenecks: (i) computing the multidimensional sum Q; (ii)
projecting Qi on X−i. Although it is guaranteed to be
polynomial in the problem size as long as the treewidth
is bounded, these operations become expensive when the
treewidth increases. This is because the size of the largest
function Vi that the algorithm has to build is equal to the
induced width of the problem. For instance, calculating
Q requires computing all non-empty intersections of pieces
of functions in B(i). Computing non-empty intersections
is done by considering all possible combinations of pieces,
putting all the faces of these pieces in a single set, and testing
the consistency of this set. If the set is consistent, then the
pieces have a non-empty intersection. In high dimensions,
this consistency test is expensive, making the summation an
overly expensive process. In the next section, we present an
algorithm that avoids these two pitfalls.

A Witness Algorithm
Algorithm 2 is a witness algorithm that efficiently imple-
ments Th. 1.1 This algorithm associates with every piece P
of Vi a witness state-vector xP = (xP

j1
, xP

j2
, . . . xP

jk
) that tes-

tify of the existence of P in Vi. It then performs the finite
calculation
∀P ∈ Vi : Vi(x

P
j1

, xP
j2

, . . . xP
jk

) =

max
xi

∑

V ∈B(i)

V (xP
j1

, xP
j2

, . . . xP
jk

, xi)

 .
(6)

The result of this local computation is generalized to pro-
duce analytical expressions of the optimal utility and pol-
icy over P . The strength of this algorithm is that once
(xj1 , xj2 , . . . xjk

) has been substituted by (xP
j1

, xP
j2

, . . . xP
jk

),
then all functions in B(i) are piecewise linear functions of
the single variable xi, that is V (xi) = α + αixi. Therefore,
summing them and maximizing them is extremely easy.

1We borrow the term witness from the POMDP literature.
Littman’s witness algorithm uses witness points to testify for the
presence of an “α-vectors” in the optimal solution of a POMDP
(Kaelbling, Littman, & Cassandra 1998).

Algorithm 2 A witness algorithm
1: while Vi is not totally defined do
2: Pick a state x0 =

`

x0
j1

, x0
j2

, . . . x0
jk

´

∈ R[X−i] where Vi is
not defined yet.

3: Determine the characteristics of the piece of Vi containing
x0 (utility u and policy µ).

4: Build a set of constraints ensuring that these characteristics
remain. This constraint set represent the faces of the piece
of Vi containing x0.

5: Simplify the constraint set built at previous step.
6: Add the new piece to Vi.
7: end while

This contrast strongly with Alg. 1 that endures very high
cost manipulating multidimensional functions.

Selecting an unexplored state x0 ∈ R[X−i] (line 2 of
Alg. 2): This step is a bottleneck where we face the mul-
tidimensional space avoided otherwise. It can be performed
systematically by a costly and complex recursive procedure.
Random and pseudo-random techniques might be more ef-
ficient despite having no guarantee of completeness. Our
prototype implementation employs a simple but inefficient
technique that checks only the points on a discrete grid cov-
ering the set of possible values for the variables in X−i.

In the following we call P 0
V the piece of Vi containing x0.

x0 is the witness of P 0
V . The next steps aim at building P 0

V .

Determining the characteristics (µ and u) of P 0
V (line 3

of Alg. 2)): Our algorithm performs these operations in a
particular way that minimizes computation time.

Given x0 =
(

x0
j1

, x0
j2

, . . . x0
jk

)

, the first operation per-
formed is to substitute (xj1 , xj2 , . . . xjk

) for x0 in every
function V ∈ B(i). The resulting function called V [x0]
is a piecewise linear function of the single variable xi:
V [x0](xi) = α0 + αixi. We later call this operation in-
stantiating V as x0.

Next all V [x0] are summed to produce the function Q[x0]
that is the instantiation of Q =

∑

V ∈B(i) V in x0. In Fig. 2,
Q[x0] represents the variation of Q along the ∆0 axis that
passes through x0. Again, these operations are straightfor-
ward and the result is a linear function of xi only.

Finally we determine the maximum of Q[x0] w.r.t. xi.
This is a straightforward optimization of a 1-dimensional
piecewise linear function. We then have solved BE funda-
mental equation in the particular point x0 with minimum
effort. We obtain an analytical expression of the optimal
utility u and the optimal policy µ in P 0

V by generalizing this
local computation as explained below.

Because the V [x0]’s and Q[x0] are unidimensional func-
tions, their faces are singular points between two adja-
cent pieces. One can show that each singular point of
V [x0]’s and Q[x0] is inherited from an face of some func-
tion V ∈ B(i). First, V [x0] is obtained by traversing the
piecewise linear value function V with the axis ∆0 defined
by (xj1 , xj2 , . . . xjk

) = x0, as in Fig. 1. The singular point
of V [x0] are the points where ∆0 intersects an face of V .

Therefore each singular point is inherited from a constraint
C of V . Second, Q[x0] is obtained by intersecting and sum-
ming the unidimensional piecewise linear functions V [x0].
Therefore, each of its singular point is inherited from a sin-
gular point of some function V [x0], and so it is inherited
from a constraint C of V . In order to determine the analyti-
cal solution, we must keep track of the relationships between
singular points of Q[x0] and constraints of V ’s; fortunately,
maintaining this information is relatively inexpensive.

Since Q[x0] is piecewise linear, its optimum is attained
in one of its singular points. The constraint at the origin of
this singular point determines the optimal policy over P 0

V . If
the constraint is C : αC

0 +
∑k

l=1 αC
jl

xjl
+ αC

i xi ≤ 0 then
the optimal policy of V 0

P is given by Eqn. 2. This is a well
defined linear policy with scope in X−i.

Now that we know the policy µ attached to V 0
P , we want to

determine an analytical expression of the utility u attached
to this piece of Vi. We cannot carry on the same computa-
tion as in the proof of Lemma 2 because we do not have an
explicit representation of Q. However, again, keeping track
of simple information achieves the same result. Indeed we
only need to memorize the piece of each V that contributes
to each piece of Q[x0], which is straightforward and very
cheap. Then, if we denote P ∗ as the piece of Q[x0] con-
taining the optimal value, we can trace back the piece PV

of each V ∈ B(i) that contributes to P ∗. By summing the
utility functions carried by these pieces, we get an analytical
expression of the utility of the piece of Q containing P ∗. As
in the proof of Lemma 2, we know the utility and the optimal
policy associated with the optimal piece of Q. Therefore, we
can get an analytical expression of the utility attached to V 0

P

by substituting xi by µ in u following Eqn. 3.
The preceding discussion shows that there is no need to

employ a complex multidimensional representation of Q to
determine the optimal policy and utility associated with V 0

P .
In this calculation, the most costly step is the instantiation of
each function V in x0. We show below how this operation
can be performed efficiently.

Instantiating V ∈ B(i) in x0 =
(

x0
j1

, x0
j2

, . . . x0
jk

)

(used
at line 3 of Alg. 2): The procedure used for instantiating
a function V in x0 loops through all pieces of V and, for
each piece P = (C, u), checks whether the ∆0-axis passing
through x0 traverses P or not. This check is performed by
substituting (xj1 , xj2 , . . . xjk

) by x0 in every constraint C ∈
C. It transforms a constraint C : α0 +

∑k

l=1 αil
xil
≤ 0 into

unidimensional constraint C[x0] that is is either

xi ≤ −
α0

αi

−

k
∑

l=1

αjl

αi

x0
jl

if αi > 0 ,

or

xi ≥ −
α0

αi

−
k
∑

l=1

αjl

αi

x0
jl

if αi < 0 .

PSfrag replacements

P

∆0

C1

C2 = C+

C3

C4 = C−

C5

K(C1)

K(C2)

K(C3)

K(C4)

K(C5)

Figure 3: Instantiating V : ∆0 (the axis defined by
(xj1 , xj2 , . . . xjk

) = x0) enters P through face C− = C4 and
leaves through face C+ = C2. For each constraint C, K(C) is the
coordinate (on ∆0) of the point where ∆0 traverses face C.

We call C+ the set of constraints of the first type and C− the
set of constraints of the second type. Then we define

K(C) = −
α0

αi

−

k
∑

l=1

αjl

αi

x0
jl

as the coordinate (on ∆0) of the point where ∆0 traverses
face C (see Fig. 3), and C+ = argminC∈C+ [K(C)]
and C− = argmaxC∈C− [K(C)]. Then ∆0 traverses P
iff. K(C−) < K(C+). If ∆0 traverses P then the segment
of ∆0 contained into P defines a piece [K(C−), K(C+)] of
V [x0]. The constraint associated with singular point K(C−)
is C− and the constraint associated with K(C+) C+. The
detail of this computation is presented in Alg. 3.

Computing the faces of the new piece (line 4 of Alg. 2):
In the proof of Lemma 2, the faces of a new piece are com-
puted by adding to the faces of P 0 (see Fig. 2) the constraints
defined by Eqn. 4. We follow the same general principle to
derive the set of faces of P 0

V .
First, because we do not have an explicit representation

of Q, we do not have an easy access to the faces of P 0.
Fortunately, an equivalent constraint set can be recovered
using a simple set of pointers. The constraints of a piece
P 0 of the projection of Q on X−i express the fact that the
axis ∆0 passing through x = (xj1 , xj2 , . . . xjk

) traverses the
same sequence of pieces of Q for all x in P 0 (cf. Fig. 2). A
necessary condition for this holding is that ∆0 traverses the
same sequence of pieces of each V ∈ B(i). Given a function
V ∈ B(i), we can build a set of constraints implying that ∆0

traverses a fixed sequence of pieces of V in two steps:
• For each piece P of V that is traversed by ∆0, add a con-

straint implying that P is still traversed by ∆0;
• For each piece P of V that is not traversed by ∆0, add a

constraint implying that P is still not traversed by ∆0.
This procedure is linear in the number of pieces in V . Since
it is performed once for each piece P 0, the algorithm is
quadratic in the maximum number of pieces in a value func-
tion. Therefore, we adopt the cheaper alternative that builds
a single set of constraints:

Algorithm 3 Instantiating V in x0 =
(

x0
j1

, x0
j2

, . . . x0
jk

)

.
1: for each piece P = (C, u) of V do
2: C− ← ∅, C+ ← ∅.
3: for each face C = (α0, αj1 , αj2 , . . . αjk

, αi) of C do
4: if xi is in the scope of C (αi 6= 0) then
5: if αi > 0 then
6: C+ ← C+ ∪ {C}.
7: else
8: C− ← C− ∪ {C}.
9: end if

10: Compute K(C) = −α0

αi
−

Pk

l=1

αjk

αi
x0

jk
.

11: else
12: // xi is not in the scope of C (αi = 0)
13: Substitute (xj1 , xj2 , . . . xjk

) for x0 in C and check for
consistency: α0 +

Pk

l=1 αjl
x0

jl
≤ 0 ?

14: if Consistent then
15: Skip to next face of C (go to line 3).
16: else
17: Skip to next piece of V (go to line 1).
18: end if
19: end if
20: end for
21: Compute C− = arg maxC∈C− [K(C)] and C+ =

arg minC∈C+ [K(C)].
22: if K(C+) <= K(C−) then
23: // Inconsistency detected
24: Skip to next piece of V (go to line 1).
25: else
26: Substitute (xj1 , xj2 , . . . xjk

) for x0 in u to get a function
u[x0](xi).

27: Add the piece
`

[K(C−), K(C+)], u[x0]
´

to V [x0]. At-
tach to singular point K(C−) the constraint C− and at-
tach C+ to K(C+).

28: end if
29: // Continue to next piece of V
30: end for
31: Return V [x0]

• For each piece P of V that is traversed by ∆0, add a con-
straint implying that ∆0 still enters and exits P through
the same faces.

This creates an equivalent set of constraints, but the com-
plexity is linear in the number of pieces traversed by ∆0

which is generally much smaller than the total number of
pieces. Now, given a piece P of V , we ensure ∆0 enters
and exit through the same face of P using two types of con-
straint:

∀C ∈ C−, C 6= C− : K(C) ≤ K(C−) ,

and
∀C ∈ C+, C 6= C+ : K(C+) ≤ K(C) .

We add a following constraint to ensure ∆0 traverses P :
K(C−) ≤ K(C+) .

Formally, if C− : α−

0 +
∑k

l=1 α−

il
xil
≤ 0, and C+ : α+

0 +
∑k

l=1 α+
il
xil
≤ 0, and C = α0 +

∑k

l=1 αil
xil
≤ 0, then

these constraints constraints are computed as (respectively):

α−

0

α−

i

−
α0

αi

+
k
∑

l=1

(

α−

jl

α−

i

−
αjl

αi

)

xjl
≤ 0 , (7)

PSfrag replacements

∆0 ∆1

x0

x1

Figure 4: The partition of R
2 defined by the pieces of Q. In this

example, there are two value functions in Bi: A reward function
R1(x1) at the origin of the horizontal faces in the figure, and a
function R01(x1−x0) that represents piecewise linear preferences
on the difference between x0 and x1 and that induces the diago-
nal constraints. This is a standard situation encountered in many
STPPs. The axis ∆0 and ∆1 traverse the same sequence of pieces
of both R1 and R01 . However, they traverse different pieces of Q.

α0

αi

−
α+

0

α+
i

+

k
∑

l=1

(

αjl

αi

−
α+

jl

α+
i

)

xjl
≤ 0 , (8)

α+
0

α+
i

−
α−

0

α−

i

+

k
∑

l=1

(

α+
jl

α+
i

−
α−

jl

α−

i

)

xjl
≤ 0 . (9)

Equations 7 to 9 allow for the building of a constraint
set that guarantees that ∆0 traverses the a fixed sequence
of pieces of each V ∈ B(i). This condition is necessary to
ensure that we stay inside of a single piece P 0, but it is not
sufficient. A counter-example is provided in Fig. 4. Fortu-
nately, this issue can be addressed by adding a small number
of simple constraints. In the example of Fig. 4, ∆0 and ∆1

traverse the same sequence of pieces of each V ∈ B(i),
but they traverse different sequences of pieces all functions
taken together. Both axis start in the first piece of R1 and
the first piece of R01, ∆0 enters the second piece of R1 be-
fore entering the second piece of R01, while ∆1 does the
opposite. Therefore, we get a complete set of constraints to
characterize the faces of P 0 in the following way: For any
two adjacent pieces [a, b] and [b, c] of Q[x0], such that Ca is
the constraint associated to singular point a during the con-
struction of Q[x0] and Cb is the constraint associated with b,
we add the constraint:

K(Ca) < K(Cb) .

If Ca : αa
0 +
∑k

l=1 αa
il
xil
≤ 0 and Cb : αb

0 +
∑k

l=1 αb
il
xil
≤

0, then it translates as:

αb
0

αb
i

−
αa

0

αa
i

+

k
∑

l=1

(

αb
jl

αb
i

−
αa

jl

αa
i

)

xjl
≤ 0 . (10)

The constraints defined by Eqn. 7 to 10 are the faces defin-
ing a unique piece P 0 of the projection of Q on X−i. In the

proof of Lemma 2, this piece is split in as many sub-pieces as
there are pieces P of Q that satisfy Eqn. 4 for some x. Here,
we are not interested in all these pieces but only the one con-
taining the current witness x0. Thus, we complete the set of
faces of P 0

V by adding the constraints defined by Eqn. 4 for
the particular piece P that carries the optimum of of Q[x0]

as computed at step 1. If uP (x) = α0 +
∑k

j=1 αjl
xjl

and
uP ′(x) = α′

0 +
∑k

j=1 α′
jl

xjl
, Eqn. 4 becomes

α′
0 − α0 +

k
∑

l=1

(

α′
jl
− αjl

)

xjl
≤ 0 . (11)

Equations 7 to 11 generate the set of all faces of P 0
V .

Simplifying Constraint Sets (line 5 of Alg. 2): The con-
straint set built by the procedure described above may con-
tain redundant constraints, or constraints that are useless be-
cause they are dominated by other constraints. For instance,
if C : x0 ≤ 0 is in the constraint set, then any constraint
C ′ : x0 ≤ K for some K > 0 can be omitted in the rep-
resentation of the piece. Indeed, our experiments show that
the witness algorithm produces many such constraints.

The algorithm complexity is sensitive to the number of
constraints in the description of each piece. Although the
maximum number of constraints in a piece is guaranteed to
be polynomial in the problem size, it is preferable to keep
this number as low as possible. Therefore, in line 5 of Alg. 2
we try to purge the set from useless constraint.

Simplifying a set C of linear constraints with scope X is
a difficult problem. At this point we are considering several
approaches to address it:
• A similar problem arises in the optimization of POMDPs

where we must determine a minimal set of linear faces to
represent a piecewise linear convex function. Here the prob-
lem is addressed by solving multiple LPs. This approach
seems relatively easily transferable to our sub-problem.
• Solving the dual program of an LP M allows determining

the constraints that are binding in the optimal solution of M
(Schrijver 1986). Defining M = (X,V , 0) where 0 is the
objective function that returns 0 in all states, then any point
inside of the polygon defined by C is an optimal solution
of M . Solving the dual problem of M can thus compute a
minimum set of faces.
• Our current implementation of the witness algorithm just

prunes the set C from unary constraints that are dominated
by other unary constraints. Useless k-ary constraints, k > 1
are kept in the description of the piece, which can hurt the
algorithm. In general, there is a trade-off between the time
spent pruning the set of constraints, and the impact of useless
constraints on complexity.
Note that the problem of simplifying C is exponential in the
number of variables in its scope X . However, in our case,
the scope of the functions is bounded by the treewidth of the
problem. Therefore, with a bounded treewidth, complexity
is polynomial in the size of the problem.

[2, 7]

3 9 13 16
0

6

0

[1, 8]

[0, 20][0, 20] [0, 20]

PSfrag replacements

t0 t1t2

R2

t2

Figure 5: A simple STPP with non-convex preferences. Interval
[li, ui] attached to vertex ti represents the hard constraint li ≤ ti ≤
ui. Interval [lij , uij] on edge ti → tj represents the hard constraint
lij ≤ tj − ti ≤ uij . There is a total of 4 value functions in B(2):
one for the hard constraint on t2, two for the hard constraints on
t2 − t0 and t2 − t1, and the reward R2(t2) represented at the top.

Summary and Future Work
This paper provides proof of concept that bucket elimina-
tion can be used to optimize a rich model of temporal pref-
erences. The potential of this concept for scheduling with
preferences is twofold. First, a richer preference model
opens up generation of schedules that better reflect the de-
sires of the modeler; second, the alternate position of BE
in the space–time trade-off opens up a complementary ap-
proach compared to prior art.

After showing the relevance and soundness of the ap-
proach, we provided a grounded algorithm. A prototype im-
plementation is capable of solving a richer class of problems
than previous approaches. It has been run successfully on
problems involving non convex and k-ary constraints. Fig. 6
shows the result of one iteration of the witness algorithm on
the STPP of Fig. 5.

At this point, our implementation of the witness algorithm
suffers from two weaknesses: (i) the simplistic grid-base
procedure used to find a new witness x0 where Vi is not yet
defined; (ii) the procedure used to simplify constraint sets
cannot handle more than unary constraints.

Our ongoing work is to improve the efficiency of the pro-
totype implementation, and to compare the BE approach
both theoretically and empirically to alternate approaches,
such as the use of repeated Linear Programming with a
branch-and-bound search.

In particular, because binary and convex STPPs is a sub-
class of problems that can be represented as linear constraint
optimization problems, it would be interesting to compare
our algorithm with the results in (Morris et al. 2004). BE
and LP approaches can both solve this sub-class of prob-
lems, but there complexity bears on different parameters.
Our future work will aim at showing experimentally that BE
can be a competitive approach for large problems with small
treewidth.

Acknowledgments. The work of the author from SRI Interna-
tional was supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. FA8750-07-D-0185/0004.

 0

 1

 2

 3

 4

 5

 6

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

 0 2 4 6 8 10 12 14 16 18 20

 0
 1
 2
 3
 4
 5
 6

PSfrag replacements

V2

t0

t1

Figure 6: The 3D value-function V2 obtained by eliminating t2 in
the problem of Fig. 5. Points not assigned a value in this graph are
those that break a hard constraint (hence they have −∞ value).

Any opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not nec-
essarily reflect the views of the DARPA, or the Air Force Research
Laboratory (AFRL).

References
Bresina, J. L.; Khatib, L.; and McGann, C. 2006. Mission op-
erations planning with preferences: An empirical study. Interna-
tional Workshop on Planning and Scheduling for Space.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49:61–95.
Dechter, R. 1999. Bucket elimination: A unifying framework for
reasoning. Artificial Intelligence 113(1-2):41–85.
Dechter, R. 2003. Constraint Processing. San Francisco, CA:
Morgan Kaufmann.
Dow, P., and Korf, R. 2007. Best-first search for treewidth. In
Proceedings of the Twenty Second National Conference on Artifi-
cial Intelligence, 1146–1151. Menlo Park, CA: AAAI Press.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Planning
and acting in partially observable stochastic domains. Artificial
Intelligence 101:99–134.
Moffitt, M. D.; Peintner, B.; and Yorke-Smith, N. 2006. Multi-
criteria optimization of temporal preferences. In Proc. of CP’06
Workshop on Preferences and Soft Constraints (Soft’06), 79–93.
Morris, P.; Morris, R.; Khatib, L.; Ramakrishnan, S.; and Bach-
mann, A. 2004. Strategies for global optimization of tempo-
ral preferences. In Proceedings of the Tenth International Con-
ference on Principles and Practice of Constraint Programming,
408–422. Berlin, Germany: Springer-Verlag.
Schrijver, A. 1986. Theory of Linear and Integer Programming.
New York, NY: John Wiley and sons.

